Downsampling produces coarsened, multi-resolution representations of data and it is used, for example, to produce lossy compression and visualization of large images, reduce computational costs, and boost deep neural representation learning. Unfortunately, due to their lack of a regular structure, there is still no consensus on how downsampling should apply to graphs and linked data. Indeed reductions in graph data are still needed for the goals described above, but reduction mechanisms do not have the same focus on preserving topological structures and properties, while allowing for resolution-tuning, as is the case in regular data downsampling. In this paper, we take a step in this direction, introducing a unifying interpretation of downsampling in regular and graph data. In particular, we define a graph coarsening mechanism which is a graph-structured counterpart of controllable equispaced coarsening mechanisms in regular data. We prove theoretical guarantees for distortion bounds on path lengths, as well as the ability to preserve key topological properties in the coarsened graphs. We leverage these concepts to define a graph pooling mechanism that we empirically assess in graph classification tasks, providing a greedy algorithm that allows efficient parallel implementation on GPUs, and showing that it compares favorably against pooling methods in literature.


翻译:下游抽样生成了粗化的、多分辨率的数据表达方式,这些数据被用于,例如,对大型图像进行失落压缩和直观化,降低计算成本,促进深神经代表性学习。不幸的是,由于缺乏常规结构,对于下游抽样应如何应用于图表和链接数据仍没有共识。事实上,上述目标仍然需要减少图形数据,但减少机制对维护地形结构和特性没有同样的关注,同时允许分辨率调整,如常规数据下游。在本文中,我们朝这个方向迈出了一步,在常规和图表数据中引入了对下游抽样的统一解释。特别是,我们定义了一个图表粗略分析机制,它是固定数据中可控缩微缩缩缩机制的图形结构对应机制。我们证明,在路径长度上存在扭曲的理论保证,以及保留关键地形特性的能力,正如常规数据下游数据所做的那样。我们利用这些概念来定义一个图表集合机制,我们在图表分类中从经验上评估了对下层抽样抽样数据进行解释,提供了一种平行的算法,从而使得在图表分类中能够进行高效的聚合性分析。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
21+阅读 · 2021年2月13日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
15+阅读 · 2018年4月3日
VIP会员
相关资讯
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员