The Riesz maps of the $L^2$ de Rham complex frequently arise as subproblems in the construction of fast preconditioners for more complicated problems. In this work we present multigrid solvers for high-order finite element discretizations of these Riesz maps with the same time and space complexity as sum-factorized operator application, i.e.~with optimal complexity in polynomial degree in the context of Krylov methods. The key idea of our approach is to build new finite elements for each space in the de Rham complex with orthogonality properties in both the $L^2$- and $H(\mathrm{d})$-inner products ($\mathrm{d} \in \{\mathrm{grad}, \mathrm{curl}, \mathrm{div}\})$ on the reference hexahedron. The resulting sparsity enables the fast solution of the patch problems arising in the Pavarino, Arnold--Falk--Winther and Hiptmair space decompositions, in the separable case. In the non-separable case, the method can be applied to an auxiliary operator that is sparse by construction. With exact Cholesky factorizations of the sparse patch problems, the application complexity is optimal but the setup costs and storage are not. We overcome this with the finer Hiptmair space decomposition and the use of incomplete Cholesky factorizations imposing the sparsity pattern arising from static condensation, which applies whether static condensation is used for the solver or not. This yields multigrid relaxations with time and space complexity that are both optimal in the polynomial degree.
翻译:Riesz 的 $L $2$ de Rham 复合的 Riesz 地图经常会随着以下问题而出现: 在为更复杂的问题建造快速先决条件的快速工程中, 经常出现问题。 在这项工作中, 我们为这些Riesz 地图的高端有限元素离散提供多格解解码器, 与总驱动操作应用程序同时和空间复杂, 即: 在 Krylov 方法中, 以多元度为最优化复杂度。 我们的方法的关键理念是, 在位于 Rham 复合的堆中, 为每个空间中具有正正反调特性的空间空间( $L2$- 和 $H ( mathrm{d}) 和 $H ( mathrm{d}) 等空间( $$$- 美元) 内产品( mathrm{ d} gard) 和 等高调解析分解分解分解分解分解元件数。 在Saldrial- liveral- decomplation distration 中, rodition rodistration rodistration 和Silation livalation rodududududalation rodudududududududs, rodududududs is the the roduds is the roduds is the roduds rodud rodaldaldald rodustel rodaldaldaldaldaldaldaldalds is is rod rod rodald is rod is rod rod rodaldiss is the the rod thes rod thes rod thes rod thes rod thes rod rod rod the rod rod rod rodaldaldald rod rod rod rod rod is rod rod the rod rod rod rod rod rod rod rodisl rod is rodis is rodis is rod