This paper presents a new approach to obtaining nearly complete coverage paths (CP) with low overlapping on 3D general surfaces using mesh models given or reconstructed from actual scenes. The CP is obtained by segmenting the mesh model into a given number of clusters using constrained centroidal Voronoi tessellation (CCVT) and finding the shortest path from cluster centroids using the geodesic metric efficiently. We introduce a new cost function to harmoniously achieve uniform areas of the obtained clusters and a restriction on the variation of triangle normals during the construction of CCVTs. The obtained clusters can be used to construct high-quality viewpoints (VP) for visual coverage tasks. Here, we utilize the planned VPs as cleaning configurations to perform residual powder removal in additive manufacturing using manipulator robots. The self-occlusion of VPs and ensuring collision-free robot configurations are addressed by integrating a proposed optimization-based strategy to find a set of candidate rays for each VP into the motion planning phase. CP planning benchmarks and physical experiments are conducted to demonstrate the effectiveness of the proposed approach. We show that our approach can compute the CPs and VPs of various mesh models with a massive number of triangles within a reasonable time.
翻译:本文介绍了一种新办法,即利用提供或从实际场景中重建的网状模型,在3D一般表面获得几乎完全的覆盖路径(CP),在3D一般表面获得低重叠的低位重叠。CP的实现方式是,将网状模型分成一定数量的组群,使用受限的中机器人Voronoois Exsellation(CCVT),并找到利用大地测量测量仪从集束中取出的最短路径。我们引入了一种新的成本功能,以和谐地实现获得的集群的统一区域,并限制在建造CCVT期间三角正常的变异。获得的集群可用于为视觉覆盖任务构建高质量视角。在这里,我们利用计划中的VP作为清洁配置,在使用操纵机器人的添加剂制造中进行残余粉末清除。通过整合拟议的优化战略,为每个VP在运动规划阶段寻找一套候选射线,从而限制三角正常的变异点阵。CP的规划基准和物理实验可以展示所提议的方法的有效性。我们利用计划的VP作为清洁的清洁配置配置,以便在操纵机器人的制造过程中进行大量的三角分析。我们的方法。</s>