In survival contexts, substantial literature exists on estimating optimal treatment regimes, where treatments are assigned based on personal characteristics for the purpose of maximizing the survival probability. These methods assume that a set of covariates is sufficient to deconfound the treatment-outcome relationship. Nevertheless, the assumption can be limiting in observational studies or randomized trials in which noncompliance occurs. Thus, we advance a novel approach for estimating the optimal treatment regime when certain confounders are not observable and a binary instrumental variable is available. Specifically, via a binary instrumental variable, we propose two semiparametric estimators for the optimal treatment regime, one of which possesses the desirable property of double robustness, by maximizing Kaplan-Meier-like estimators within a pre-defined class of regimes. Because the Kaplan-Meier-like estimators are jagged, we incorporate kernel smoothing methods to enhance their performance. Under appropriate regularity conditions, the asymptotic properties are rigorously established. Furthermore, the finite sample performance is assessed through simulation studies. We exemplify our method using data from the National Cancer Institute's (NCI) prostate, lung, colorectal, and ovarian cancer screening trial.
翻译:在生存环境中,有大量的文献研究了如何估计最优治疗方案,即根据个人特征分配治疗以最大化生存概率。这些方法假定一组协变量足以消除治疗结果联系的混杂因素。然而,在观察研究或随机试验中,非遵从性发生时假设可能会受到限制。因此,我们提出了一种新方法,当某些混杂因素不可观测且可用二元工具变量时,可以估计最优治疗方案。具体而言,通过二元工具变量,我们提出了两个半参数估计量,用于最优治疗方案,其中一个具有理想的双重鲁棒性质,即在预定义的方案类别内最大化 Kaplan-Meier 类似的估计量。由于 Kaplan-Meier 型估计器是锯齿状的,因此我们采用核平滑方法来增强它们的性能。在适当的正则条件下,严格证明了渐近性质。此外,通过模拟研究评估了有限样本性能。我们利用国家癌症研究所的前列腺、肺、结肠和卵巢癌筛查试验数据来说明我们的方法。