Sum-of-norms clustering is a convex optimization problem whose solution can be used for the clustering of multivariate data. We propose and study a localized version of this method, and show in particular that it can separate arbitrarily close balls in the stochastic ball model. More precisely, we prove a quantitative bound on the error incurred in the clustering of disjoint connected sets. Our bound is expressed in terms of the number of datapoints and the localization length of the functional.
翻译:知识总组合是一个共振优化问题,其解决方案可以用于多变量数据组合。我们建议并研究这一方法的本地化版本,并特别表明它可以在随机球模型中任意隔离紧闭球体。更确切地说,我们证明在不连接的组合组合中发生的错误是量化的。我们的约束是以数据点的数量和功能的本地化长度表示的。