We construct a new class of efficient Monte Carlo methods based on continuous-time piecewise deterministic Markov processes (PDMPs) suitable for inference in high dimensional sparse models, i.e. models for which there is prior knowledge that many coordinates are likely to be exactly $0$. This is achieved with the fairly simple idea of endowing existing PDMP samplers with 'sticky' coordinate axes, coordinate planes etc. Upon hitting those subspaces, an event is triggered during which the process sticks to the subspace, this way spending some time in a sub-model. This results in non-reversible jumps between different (sub-)models. While we show that PDMP samplers in general can be made sticky, we mainly focus on the Zig-Zag sampler. Compared to the Gibbs sampler for variable selection, we heuristically derive favourable dependence of the Sticky Zig-Zag sampler on dimension and data size. The computational efficiency of the Sticky Zig-Zag sampler is further established through numerical experiments where both the sample size and the dimension of the parameter space are large.
翻译:我们根据连续的片段确定式马可夫工艺(PDMPs),根据适合高维分散模型(即以前知道许多坐标可能完全为0美元的模型)推断的连续片段确定式马可夫工艺(PDMPs),构建了新型高效的蒙特卡洛方法。这是通过将现有的PDMP采样器与“粘性”坐标轴、坐标平面等相匹配这一相当简单的想法实现的。在击中这些子空间时,会触发一个事件,在这一事件中,过程会粘贴到子空间,这样就可以在一个子模型中花费一些时间。这导致不同(子)模型之间的不可逆跳跃。这导致不同(子)模型之间的不可逆跳跃。虽然我们显示PDMP采样器一般可以粘贴,但我们主要侧重于Zig-Zag采样器。与Gibbs采样器相比,我们在变量选择时,会从中得出粘性Zig-Zag采样器对尺寸和数据大小的有利依赖性。Styy Zig-Zag采样器的计算效率通过数值实验进一步确定,这里的样品大小和参数空间的尺寸都很大。