Touch is an important channel for human-robot interaction, while it is challenging for robots to recognize human touch accurately and make appropriate responses. In this paper, we design and implement a set of large-format distributed flexible pressure sensors on a robot dog to enable natural human-robot tactile interaction. Through a heuristic study, we sorted out 81 tactile gestures commonly used when humans interact with real dogs and 44 dog reactions. A gesture classification algorithm based on ResNet is proposed to recognize these 81 human gestures, and the classification accuracy reaches 98.7%. In addition, an action prediction algorithm based on Transformer is proposed to predict dog actions from human gestures, reaching a 1-gram BLEU score of 0.87. Finally, we compare the tactile interaction with the voice interaction during a freedom human-robot-dog interactive playing study. The results show that tactile interaction plays a more significant role in alleviating user anxiety, stimulating user excitement and improving the acceptability of robot dogs.
翻译:触摸是人类- 机器人互动的一个重要渠道, 而对于机器人来说, 准确识别人类触摸并做出适当反应是困难的。 在本文中, 我们设计并实施了一套大型的、 格式分布式的软压力传感器, 在机器人狗身上进行自然的人类- 机器人触摸互动。 我们通过一种超常研究, 整理出人类与真狗互动时常用的81个触动手势和44个狗反应。 提议基于 ResNet 的手势分类算法, 以识别这81个人类手势, 分类精确度达到98.7% 。 此外, 以变异器为基础的行动预测算法, 以预测人类手势中的狗动作, 达到0. 87 1克 BLEU 的分数 。 最后, 我们比较了人类- 机器人- 狗互动 研究期间的触动动作与声音互动。 结果显示, 触动性互动在减轻用户焦虑、 刺激用户的兴奋性以及改善机器人狗的可接受性方面起着更重要的作用 。</s>