In this paper, we propose a procedure to test the independence of bivariate censored data, which is generic and applicable to any censoring types in the literature. To test the hypothesis, we consider a rank-based statistic, Kendall's tau statistic. The censored data defines a restricted permutation space of all possible ranks of the observations. We propose the statistic, the average of Kendall's tau over the ranks in the restricted permutation space. To evaluate the statistic and its reference distribution, we develop a Markov chain Monte Carlo (MCMC) procedure to obtain uniform samples on the restricted permutation space and numerically approximate the null distribution of the averaged Kendall's tau. We apply the procedure to three real data examples with different censoring types, and compare the results with those by existing methods. We conclude the paper with some additional discussions not given in the main body of the paper.
翻译:在本文中,我们提出一个程序来测试双轨审查数据的独立性,该程序是通用的,适用于文献中的任何审查类型。为了检验这一假设,我们考虑一个基于等级的统计数字,即Kendall's tau统计。受审查的数据界定了所有可能观察层次的有限变换空间。我们提议了该统计数据,即限制变换空间中Kendall's tau的平均值。为了评估该统计数据及其参考分布,我们制定了一个Markov连锁Monte Carlo(MCMC)程序,以获得限制变换空间的统一样本,并在数字上接近平均的Kendall's Tau的无效分布。我们采用该程序对三种真实数据例子采用不同的审查类型,并将结果与现有方法进行比较。我们最后对该文件进行了一些没有在文件主体进行的额外讨论。