We present SPILDL, a Scalable and Parallel Inductive Learner in Description Logic (DL). SPILDL is based on the DL-Learner (the state of the art in DL-based ILP learning). As a DL-based ILP learner, SPILDL targets the $\mathcal{ALCQI}^{\mathcal{(D)}}$ DL language, and can learn DL hypotheses expressed as disjunctions of conjunctions (using the $\sqcup$ operator). Moreover, SPILDL's hypothesis language also incorporates the use of string concrete roles (also known as string data properties in the Web Ontology Language, OWL); As a result, this incorporation of powerful DL constructs, enables SPILDL to learn powerful DL-based hypotheses for describing many real-world complex concepts. SPILDL employs a hybrid parallel approach which combines both shared-memory and distributed-memory approaches, to accelerates ILP learning (for both hypothesis search and evaluation). According to experimental results, SPILDL's parallel search improved performance by up to $\sim$27.3 folds (best case). For hypothesis evaluation, SPILDL improved evaluation performance through HT-HEDL (our multi-core CPU + multi-GPU hypothesis evaluation engine), by up to 38 folds (best case). By combining both parallel search and evaluation, SPILDL improved performance by up to $\sim$560 folds (best case). In terms of worst case scenario, SPILDL's parallel search doesn't provide consistent speedups on all datasets, and is highly dependent on the search space nature of the ILP dataset. For some datasets, increasing the number of parallel search threads result in reduced performance, similar or worse than baseline. Some ILP datasets benefit from parallel search, while others don't (or the performance gains are negligible). In terms of parallel evaluation, on small datasets, parallel evaluation provide similar or worse performance than baseline.
翻译:暂无翻译