A novel 4K video frame interpolator based on bilateral transformer (BiFormer) is proposed in this paper, which performs three steps: global motion estimation, local motion refinement, and frame synthesis. First, in global motion estimation, we predict symmetric bilateral motion fields at a coarse scale. To this end, we propose BiFormer, the first transformer-based bilateral motion estimator. Second, we refine the global motion fields efficiently using blockwise bilateral cost volumes (BBCVs). Third, we warp the input frames using the refined motion fields and blend them to synthesize an intermediate frame. Extensive experiments demonstrate that the proposed BiFormer algorithm achieves excellent interpolation performance on 4K datasets. The source codes are available at https://github.com/JunHeum/BiFormer.


翻译:本文提出了一种基于双侧 Transformer 的 4K 视频帧插值器 BiFormer,它执行三个步骤:全局运动估计、局部运动细化和帧合成。首先,在全局运动估计中,我们在粗略尺度上预测对称的双侧运动场。为此,我们提出了 BiFormer,第一个基于 Transformer 的双侧运动估计器。其次,我们使用块状双侧代价体量(BBCVs)高效地细化全局运动场。第三,我们使用细化的运动场对输入帧进行变形,然后混合它们以合成中间帧。广泛的实验表明,提出的 BiFormer 算法在四个数据集上都获得了出色的插值性能。源代码可在 https://github.com/JunHeum/BiFormer 获得。

0
下载
关闭预览

相关内容

【CVPR2023】BiFormer:基于双层路由注意力的视觉Transformer
专知会员服务
33+阅读 · 2023年3月20日
【CVPR2022】基于密集学习的半监督目标检测
专知会员服务
19+阅读 · 2022年4月19日
【CVPR2022】端到端实时矢量边缘提取(E2EC)
专知会员服务
15+阅读 · 2022年4月14日
专知会员服务
20+阅读 · 2021年7月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
图像处理:从 bilateral filter 到 HDRnet
极市平台
30+阅读 · 2019年8月7日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
VIP会员
相关资讯
图像处理:从 bilateral filter 到 HDRnet
极市平台
30+阅读 · 2019年8月7日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员