In this paper we propose a fully-supervised pretraining scheme based on contrastive learning particularly tailored to dense classification tasks. The proposed Context-Self Contrastive Loss (CSCL) learns an embedding space that makes semantic boundaries pop-up by use of a similarity metric between every location in an training sample and its local context. For crop type semantic segmentation from satellite images we find performance at parcel boundaries to be a critical bottleneck and explain how CSCL tackles the underlying cause of that problem, improving the state-of-the-art performance in this task. Additionally, using images from the Sentinel-2 (S2) satellite missions we compile the largest, to our knowledge, dataset of satellite image timeseries densely annotated by crop type and parcel identities, which we make publicly available together with the data generation pipeline. Using that data we find CSCL, even with minimal pretraining, to improve all respective baselines and present a process for semantic segmentation at super-resolution for obtaining crop classes at a more granular level. The proposed method is further validated on the task of semantic segmentation on 2D and 3D volumetric images showing consistent performance improvements upon competitive baselines.
翻译:在本文中,我们提出一个基于对比性学习的完全监督的训练前计划,特别针对密集的分类任务,拟议的内部自相矛盾损失方案(CSCL)学习一个嵌入空间,通过使用培训样本中每个地点及其当地环境之间的类似度度指标,使语义边界弹出。对于农作物类型和卫星图像的语义分割,我们认为在包裹边界的性能是一个关键瓶颈,并解释CSCL如何解决该问题的根本原因,改进这项工作中最先进的性能。此外,我们利用哨兵-2号卫星飞行任务(S2)的图像,编集最大的图像,根据我们的知识,用作物类型和包裹特性来密集地标注卫星图像系列数据,与数据生成管道一起公开提供这些数据。我们利用这些数据发现CSCL,即使只有最低限度的预先训练,也能改进所有相关的基线,并在超级分辨率上提出一种语义分解过程,以便在较微粒级一级获得作物类的最新性能。拟议的方法进一步验证了2D和3D卷图像的竞争性性能基线。