We propose a geometric structure induced by any given convex polygon $P$, called $Nest(P)$, which is an arrangement of $\Theta(n^2)$ line segments, each of which is parallel to an edge of $P$, where $n$ denotes the number of edges of $P$. We then deduce six nontrivial properties of $Nest(P)$ from the convexity of $P$ and the parallelism of the line segments in $Nest(P)$. Among others, we show that $Nest(P)$ is a subdivision of the exterior of $P$, and its inner boundary interleaves the boundary of $P$. They manifest that $Nest(P)$ has a surprisingly good interaction with the boundary of $P$. Furthermore, we study some computational problems on $Nest(P)$. In particular, we consider three kinds of location queries on $Nest(P)$ and answer each of them in (amortized) $O(\log^2n)$ time. Our algorithm for answering these queries avoids an explicit construction of $Nest(P)$, which would take $\Omega(n^2)$ time. By applying the aforementioned six properties altogether, we find that the geometric optimization problem of finding the maximum area parallelogram(s) in $P$ can be reduced to answering $O(n)$ aforementioned location queries, and thus be solved in $O(n\log^2n)$ time. This application will be reported in a subsequent paper.


翻译:我们提出由任何给定的 convex pologon $P$(P) 诱导的几何结构,称为 $nest(P),这是由$$(n%2) 美元组成的一个安排,每条线段均与$(P) 的边缘相平行,其中美元表示的边缘数为$(P) 美元。然后我们从 $(P) 的共性和线段的平行($(P) 美元) 中推论出六种非三重性(P) 美元。 我们考虑三种关于$(P) 美元(美元) 和每条线段的平行性(P) 美元(P) 是美元外部的子块, 其内部边界间截断出$(P) $(P) 的边界。 它们表明$(P) 美元与$(P) 的边界有惊人的良好互动。 此外, 我们研究一些关于$(P) $(P) 的计算问题。 特别是, 我们考虑三种关于 $(P) 问题的查询, 答案会以三种( $( am) $( $(a) log) $(P) $(美元) $(美元) 美元) 解 (美元) 答案会在时间里, 我们的计算这些解算算出 美元) 最多(O) 最多(O) 美元) 的计算。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
42+阅读 · 2020年12月18日
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
100+阅读 · 2020年7月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月9日
Arxiv
0+阅读 · 2021年8月4日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
3+阅读 · 2018年10月18日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员