We consider the problem of designing fundamental graph algorithms on the model of Massive Parallel Computation (MPC). The input to the problem is an undirected graph $G$ with $n$ vertices and $m$ edges, and with $D$ being the maximum diameter of any connected component in $G$. We consider the MPC with low local space, allowing each machine to store only $\Theta(n^\delta)$ words for an arbitrarily constant $\delta > 0$, and with linear global space (which is equal to the number of machines times the local space available), that is, with optimal utilization. In a recent breakthrough, Andoni et al. (FOCS 18) and Behnezhad et al. (FOCS 19) designed parallel randomized algorithms that in $O(\log D + \log \log n)$ rounds on an MPC with low local space determine all connected components of an input graph, improving upon the classic bound of $O(\log n)$ derived from earlier works on PRAM algorithms. In this paper, we show that asymptotically identical bounds can be also achieved for deterministic algorithms: we present a deterministic MPC low local space algorithm that in $O(\log D + \log \log n)$ rounds determines all connected components of the input graph.
翻译:我们考虑在大规模平行计算模型(MPC)上设计基本图表算法的问题。 输入的问题在于一个没有方向的图形$G$, 上面有美元脊椎和美元边缘, 而美元是任何连接组件的最大直径, 上面只有$G$。 我们考虑本地空间低的 MPC, 允许每台机器在本地空间低的 MPC 中只存储$\ Theta( n ⁇ delta) 字数, 任意的常数$\delta > 0美元, 以及线性全球空间( 相当于本地空间的机器数乘数), 也就是最佳利用。 在最近的一个突破中, Andoni et al. (FOCS 18) 和 Behnezhad et al. (FOCS 19) 设计了平行的随机算法, 在本地空间低的 MPC 回合中, 只能存储输入图中的所有连接组件, 改进了 $O(log n) 的经典框框框框框, 也就是 PRAM 算的早期作品。 在本文中, 我们也可以确定, 本地的平面的磁盘 。