A singularly perturbed parabolic problem of convection-diffusion type with a discontinuous initial condition is examined. A particular complimentary error function is identified which matches the discontinuity in the initial condition. The difference between this analytical function and the solution of the parabolic problem is approximated numerically. A co-ordinate transformation is used so that a layer-adapted mesh can be aligned to the interior layer present in the solution. Numerical analysis is presented for the associated numerical method, which establishes that the numerical method is a parameter-uniform numerical method. Numerical results are presented to illustrate the pointwise error bounds established in the paper.


翻译:检查了异常扰动的对流-扩散类型的抛物线问题,最初状态不连续。确定了一种与初始状态不连续相匹配的特殊互补错误函数。该分析函数与抛物线问题解决方案的差别在数字上大致相同。使用了一个坐标变换,使图层适应的网格能够与解决方案中存在的内层对齐。为相关数字方法提供了数值分析,该方法确定数字方法是一种参数-统一的数字方法。提供了数字结果,以说明文件中设定的点误差界限。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2020年12月3日
Arxiv
0+阅读 · 2020年12月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员