We consider a special nonconvex quartic minimization problem over a single spherical constraint, which includes the discretized energy functional minimization problem of non-rotating Bose-Einstein condensates (BECs) as one of the important applications. Such a problem is studied by exploiting its characterization as a nonlinear eigenvalue problem with eigenvector nonlinearity (NEPv), which admits a unique nonnegative eigenvector, and this eigenvector is exactly the global minimizer to the quartic minimization. With these properties, any algorithm converging to the nonnegative stationary point of this optimization problem finds its global minimum, such as the regularized Newton (RN) method. In particular, we obtain the global convergence to global optimum of the inexact alternating direction method of multipliers (ADMM) for this problem. Numerical experiments for applications in non-rotating BEC validate our theories.
翻译:我们认为,在单一球体限制方面,一个特殊的非碳化度最小化问题是一个特殊问题,其中包括非旋转波塞-Einstein凝聚物(BECs)的离散能功能最小化问题,这是一个重要的应用之一,通过将这一问题定性为非线性亚值问题而加以研究,与乙型动物非线性非线性(NEPv)问题(NEPv)相提并论,后者承认一种独特的非阴性乙型乙型动物,而这个乙型动物源体恰恰是全球最小化临界点。有了这些特性,任何与这一优化问题的非负性固定点相融合的算法都找到了其全球最低值,例如正规化的牛顿(RN)方法。特别是,我们获得了全球趋同性最佳的异性交替的乘数法(ADMM)在这一问题上的最佳值。用于非旋转的BEC应用的数值实验证实了我们的理论。