Spatio-temporal areal data can be seen as a collection of time series which are spatially correlated according to a specific neighboring structure. Incorporating the temporal and spatial dimension into a statistical model poses challenges regarding the underlying theoretical framework as well as the implementation of efficient computational methods. We propose to include spatio-temporal random effects using a conditional autoregressive prior, where the temporal correlation is modeled through an autoregressive mean decomposition and the spatial correlation by the precision matrix inheriting the neighboring structure. Their joint distribution constitutes a Gaussian Markov Random Field, whose sparse precision matrix enables the usage of efficient sampling algorithms. We cluster the areal units using a nonparametric prior, thereby learning latent partitions of the areal units. The performance of the model is assessed via an application to study regional unemployment patterns in Italy. When compared to other spatial and spatio-temporal competitors, our model shows more precise estimates and the additional information obtained from the clustering allows for an extended economic interpretation of the unemployment rates of the Italian provinces.
翻译:将时间和空间层面纳入统计模型对基础理论框架以及高效计算方法的实施提出了挑战。我们提议在使用有条件的自动递减前,将时空随机效应纳入其中,因为时间相关性是通过自动递减平均分解模型和继承邻接结构的精确矩阵的空间相关性模型建模的。它们的联合分布构成高西亚马可夫随机场,其稀少的精确矩阵使得能够使用高效的抽样算法。我们利用非对称前将小单位分组,从而学习小单位的潜在分割法。模型的性能是通过意大利区域失业模式研究应用评估的。与其他空间和时空竞争者相比,模型显示了更准确的估计数和从集成中获得的额外信息,从而得以对意大利各省的失业率进行更广泛的经济解释。