Incomplete multi-view clustering, which aims to solve the clustering problem on the incomplete multi-view data with partial view missing, has received more and more attention in recent years. Although numerous methods have been developed, most of the methods either cannot flexibly handle the incomplete multi-view data with arbitrary missing views or do not consider the negative factor of information imbalance among views. Moreover, some methods do not fully explore the local structure of all incomplete views. To tackle these problems, this paper proposes a simple but effective method, named localized sparse incomplete multi-view clustering (LSIMVC). Different from the existing methods, LSIMVC intends to learn a sparse and structured consensus latent representation from the incomplete multi-view data by optimizing a sparse regularized and novel graph embedded multi-view matrix factorization model. Specifically, in such a novel model based on the matrix factorization, a l1 norm based sparse constraint is introduced to obtain the sparse low-dimensional individual representations and the sparse consensus representation. Moreover, a novel local graph embedding term is introduced to learn the structured consensus representation. Different from the existing works, our local graph embedding term aggregates the graph embedding task and consensus representation learning task into a concise term. Furthermore, to reduce the imbalance factor of incomplete multi-view learning, an adaptive weighted learning scheme is introduced to LSIMVC. Finally, an efficient optimization strategy is given to solve the optimization problem of our proposed model. Comprehensive experimental results performed on six incomplete multi-view databases verify that the performance of our LSIMVC is superior to the state-of-the-art IMC approaches. The code is available in https://github.com/justsmart/LSIMVC.
翻译:虽然已经制定了许多方法,但大多数方法要么不能灵活处理不完全的多视图数据,而任意缺乏观点,要么不考虑各种观点之间信息不平衡的消极因素;此外,有些方法并不完全探索所有不完整观点的当地结构;为了解决这些问题,本文件建议采用一种简单而有效的方法,即地方性零散的多视图群集(LSIMMC)的名称。与现有方法不同,LSIMVC打算从不完整的多视图数据中学习一个稀少和结构化的共识潜在代表,即通过优化一个稀少的固定和新颖图表嵌入多视图矩阵化的多视图矩阵化模型模型,或者不考虑各种观点之间信息不平衡的消极因素;此外,有些方法并不完全探索所有不完整个人观点的本地结构;为了解决这些问题,本文件还提出了一个新的本地图嵌入术语,以学习结构化的共识代表。与现有工作不同的是,我们本地图形化术语将图表汇总的高级任务和共识化的多视图化矩阵化矩阵化模型,具体地说,一个基于矩阵化的模型化指标性化的模型,学习了一个精确的模型,最后学习了LIMI标准。