A Gaussian Process GP based ground segmentation method is proposed in this paper which is fully developed in a probabilistic framework. The proposed method tends to obtain a continuous realistic model of the ground. The LiDAR three-dimensional point cloud data is used as the sole source of the input data. The physical realities of the data are taken into account to properly classify sloped ground as well as the flat ones. Furthermore, unlike conventional ground segmentation methods, no height or distance constraints or limitations are required for the algorithm to be applied to take all the regarding physical behavior of the ground into account. Furthermore, a density-like parameter is defined to handle ground-like obstacle points in the ground candidate set. The non-stationary covariance kernel function is used for the Gaussian Process, by which Bayesian inference is applied using the maximum A Posteriori criterion. The log-marginal likelihood function is assumed to be a multi-task objective function, to represent a whole-frame unbiased view of the ground at each frame. Simulation results show the effectiveness of the proposed method even in an uneven, rough scene which outperforms similar Gaussian process-based ground segmentation methods.
翻译:本文提出了基于高斯进程GP的地面偏移方法,该方法在概率框架范围内得到充分开发。 提议的方法倾向于获得一个连续的地面现实模型。 使用LiDAR三维点云数据作为输入数据的唯一来源。 数据的实际现实被考虑在内, 以适当分类斜坡地面和平坦地面。 此外, 不同于常规的地面偏移方法, 使用算法来将地面的物理行为考虑进去不需要高度或距离限制或限制。 此外, 定义了一个类似密度的参数, 以处理地面候选数据集中的地面相似障碍点。 非静止的内核功能被用于高斯进程, 从而使用最高“ 后表” 标准来进行贝斯语推判。 逻辑边界概率功能被假定为多任务目标功能, 以代表每个框架的地面全框架的不偏观。 模拟结果显示拟议方法的有效性, 即使在一个不均匀、 粗糙的场景区块中, 也以类似地面段的方法为外。