We present a framework for the unsupervised learning of neurosymbolic encoders, which are encoders obtained by composing neural networks with symbolic programs from a domain-specific language. Our framework naturally incorporates symbolic expert knowledge into the learning process, which leads to more interpretable and factorized latent representations compared to fully neural encoders. We integrate modern program synthesis techniques with the variational autoencoding (VAE) framework, in order to learn a neurosymbolic encoder in conjunction with a standard decoder. The programmatic descriptions from our encoders can benefit many analysis workflows, such as in behavior modeling where interpreting agent actions and movements is important. We evaluate our method on learning latent representations for real-world trajectory data from animal biology and sports analytics. We show that our approach offers significantly better separation of meaningful categories than standard VAEs and leads to practical gains on downstream analysis tasks, such as for behavior classification.
翻译:我们为不受监督地学习神经同步编码器提供了一个框架,这些神经同步编码器是通过以特定领域语言的象征性程序建立神经网络而获得的编码器。我们的框架自然地将象征性专家知识纳入学习过程,这导致与完全神经编码器相比,真实世界轨迹数据的潜在表达方式更具可解释性和因地制宜性。我们把现代程序合成技术与变异自动编码框架结合起来,以便结合标准的解码器学习神经同步编码器。我们的编码器的方案描述可以使许多分析工作流程受益,例如在行为模型中解释代理人的行动和运动非常重要。我们评估了我们从动物生物学和体育分析学中学习真实世界轨迹数据的潜在表述的方法。我们表明,我们的方法比标准VAE系统(VAEs)对有意义的类别进行了更好的分离,并导致在行为分类等下游分析任务方面取得实际收益。