This paper investigates the codebook based near-field beam training of Intelligent Reflecting Surface (IRS). In the considered model, near-field beam training should be performed to focus the signals at the location of user equipment (UE) to obtain the prominent IRS array gain. However, existing codebook schemes can not realize low training overhead and high receiving power, simultaneously. To tackle this issue, a novel two-layer codebook is proposed. Specifically, the layer-1 codebook is designed based on the omnidirectivity of random-phase beam pattern, which estimates the UE distance with training overhead equivalent to that of a DFT codeword. Then, based on the estimated distance of UE, the layer-2 codebook is generated to scan the candidate locations of UE, and finally obtain the optimal codeword for IRS beamforming. Numerical results show that, compared with the benchmarks, the proposed codebook scheme makes more accurate estimation of UE distances and angles, achieving higher date rate, yet with a smaller training overhead.


翻译:本文调查了基于智能反射表面(IRS)近场光束的代码手册培训。在考虑的模型中,近场光束培训应侧重于用户设备(UE)所在地的信号,以获得显著的IRS阵列收益。然而,现有的代码手册计划不能同时实现低培训间接费用和高接收功率。为解决这一问题,提出了一个新的双层代码手册。具体地说,层-1代码手册的设计基于随机波段波束模式的全局性,该模式估计UE距离与培训间接费用的距离相当于DFT编码词的距离。然后,根据UE的估计距离,生成层-2代码手册以扫描UE候选地点,并最终获得IRS光谱化的最佳代码。数字结果显示,与基准相比,拟议的代码手册计划更准确地估计了UE的距离和角度,实现了更高的日期率,但培训费则较小。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年4月29日
Arxiv
0+阅读 · 2023年4月28日
Arxiv
14+阅读 · 2021年3月10日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员