This paper presents an uncalibrated deep neural network framework for the photometric stereo problem. For training models to solve the problem, existing neural network-based methods either require exact light directions or ground-truth surface normals of the object or both. However, in practice, it is challenging to procure both of this information precisely, which restricts the broader adoption of photometric stereo algorithms for vision application. To bypass this difficulty, we propose an uncalibrated neural inverse rendering approach to this problem. Our method first estimates the light directions from the input images and then optimizes an image reconstruction loss to calculate the surface normals, bidirectional reflectance distribution function value, and depth. Additionally, our formulation explicitly models the concave and convex parts of a complex surface to consider the effects of interreflections in the image formation process. Extensive evaluation of the proposed method on the challenging subjects generally shows comparable or better results than the supervised and classical approaches.
翻译:本文为光度立体问题提供了一个未经校正的深神经网络框架。 对于用于解决问题的培训模型, 现有的神经网络方法要么要求物体的精确光向或地面真实表面正常度, 要么两者兼而有之。 但是, 在实践中, 要准确获取这两种信息, 很难, 这限制了对视觉应用应用更广泛地采用光度立体算法。 为了绕过这一困难, 我们建议了一种未经校正的神经反向方法 。 我们的方法首先估计输入图像的光线方向, 然后优化图像重建损失, 以计算表面正常度、 双向反射分布函数值和深度。 此外, 我们的配方明确模拟复杂表面的相形和二次曲线部分, 以考虑图像形成过程中的相互反射效果。 对挑战主题的拟议方法进行广泛评估, 其结果一般比监督和经典方法要相似或更好。