Random forest is an important method for ML applications due to its broad outperformance over competing methods for structured tabular data. We propose a method for transfer learning in nonparametric regression using a centered random forest (CRF) with distance covariance-based feature weights, assuming the unknown source and target regression functions are different for a few features (sparsely different). Our method first obtains residuals from predicting the response in the target domain using a source domain-trained CRF. Then, we fit another CRF to the residuals, but with feature splitting probabilities proportional to the sample distance covariance between the features and the residuals in an independent sample. We derive an upper bound on the mean square error rate of the procedure as a function of sample sizes and difference dimension, theoretically demonstrating transfer learning benefits in random forests. In simulations, we show that the results obtained for the CRFs also hold numerically for the standard random forest (SRF) method with data-driven feature split selection. Beyond transfer learning, our results also show the benefit of distance-covariance-based weights on the performance of RF in some situations. Our method shows significant gains in predicting the mortality of ICU patients in smaller-bed target hospitals using a large multi-hospital dataset of electronic health records for 200,000 ICU patients.
翻译:暂无翻译