The input to the \emph{Triangle Evacuation} problem is a triangle $ABC$. Given a starting point $S$ on the perimeter of the triangle, a feasible solution to the problem consists of two unit-speed trajectories of mobile agents that eventually visit every point on the perimeter of $ABC$. The cost of a feasible solution (evacuation cost) is defined as the supremum over all points $T$ of the time it takes that $T$ is visited for the first time by an agent plus the distance of $T$ to the other agent at that time. Similar evacuation type problems are well studied in the literature covering the unit circle, the $\ell_p$ unit circle for $p\geq 1$, the square, and the equilateral triangle. We extend this line of research to arbitrary non-obtuse triangles. Motivated by the lack of symmetry of our search domain, we introduce 4 different algorithmic problems arising by letting the starting edge and/or the starting point $S$ on that edge to be chosen either by the algorithm or the adversary. To that end, we provide a tight analysis for the algorithm that has been proved to be optimal for the previously studied search domains, as well as we provide lower bounds for each of the problems. Both our upper and lower bounds match and extend naturally the previously known results that were established only for equilateral triangles.
翻译:对 emph{ Trinder Evacuation} 问题的投入是一个三角 $ ABC 。 三角形周边的起点是 $S 美元 。 鉴于三角形周围的起点是 $S, 问题的可行解决办法包括最终访问$ABC 周边每个点的移动剂的两个单位- 速度轨道。 可行的解决办法的成本( 撤离成本) 的定义是, 在所有点上, $T 美元 第一次被代理商访问时, 美元 由代理商访问时首次 美元, 外加 $T 至 其它代理商的距离。 类似的疏散类型问题在涵盖单位圆的文献中得到了很好的研究, $\ ell_ p$ geq 1$, 方形和等边三角的单位- 。 我们将这一研究范围扩大到任意的非渗透三角 。 由于我们搜索域缺乏对称性, 我们引入了四个不同的算法问题, 是在那个边缘和( 或) 开始点 $S $ 美元 在那个边缘上, 我们只能选择 以 更低的 的 的, 或 最接近 的 的 的 的 。