The article proposes a new method for finding the triangle-triangle intersection in 3D space, based on the use of computer graphics algorithms -- cutting off segments on the plane when moving and rotating the beginning of the coordinate axes of space. This method is obtained by synthesis of two methods of cutting off segments on the plane -- Cohen-Sutherland algorithm and FC-algorithm. In the proposed method, the problem of triangle-triangle intersection in 3D space is reduced to a simpler and less resource-intensive cut-off problem on the plane. The main feature of the method is the developed scheme of coding the points of the cut-off in relation to the triangle segment plane. This scheme allows you to get rid of a large number of costly calculations. In the article the cases of intersection of triangles at parallelism, intersection and coincidence of planes of triangles are considered. The proposed method can be used in solving the problem of tetrahedron intersection, using the finite element method, as well as in image processing.
翻译:文章提出了在 3D 空间中寻找三角三角三角交叉点的新方法, 其依据是计算机图形算法的使用 -- -- 在移动和旋转空间坐标轴的起始点时切断平面上的分块。 这种方法是通过合并在平面上截断段的两种方法 -- -- Cohen- Sutherland 算法和 FC- algorithm 获得的。 在拟议方法中, 3D 空间中三角三角三角交叉点问题将减少到在平面上简单和较少资源密集的截断点问题。 方法的主要特征是开发了对三角段平面上的截断点进行编码的计划。 这个方法可以使您摆脱大量昂贵的计算。 在文章中, 考虑了三角形平行、 交叉和交错的三角点的交叉点。 拟议的方法可用于解决四面交点问题, 使用有限的元素方法, 以及图像处理 。