The maximum likelihood estimation of the left-truncated log-logistic distribution with a given truncation point is analyzed in detail from both mathematical and numerical perspectives. These maximum likelihood equations often do not possess a solution, even for small truncations. A simple criterion is provided for the existence of a regular maximum likelihood solution. In this case a profile likelihood function can be constructed and the optimisation problem is reduced to one dimension. When the maximum likelihood equations do not admit a solution for certain data samples, it is shown that the Pareto distribution is the $L^1$-limit of the degenerated left-truncated log-logistic distribution. Using this mathematical information, a highly efficient Monte Carlo simulation is performed to obtain critical values for some goodness-of-fit tests. The confidence tables and an interpolation formula are provided and several applications to real world data are presented.
翻译:从数学和数字角度详细分析对左曲流日志分布的最大可能性估计,从数学和数字角度对特定截断点进行详细分析。这些最大可能性方程式往往没有解决办法,即使是小短路。为存在定期最大可能性解决方案提供了简单标准。在此情况下,可以构建剖析概率函数,优化问题降低到一个维度。当最大可能性方程式不承认某些数据样本的解决方案时,则显示Pareto分布值是退化左曲流逻辑物流分布值的1美元限值。利用这一数学信息,进行了高效的蒙特卡洛模拟,以获得某些良好测试的关键值。提供了信任表和内插公式,并提供了真实世界数据的若干应用程序。