Reducing the global burden of stillbirths is important to improving child and maternal health. Of interest is understanding patterns in the timing of stillbirths -- that is, whether they occur in the intra- or antepartum period -- because stillbirths that occur intrapartum are largely preventable. However, data availability on the timing of stillbirths is highly variable across the world, with low- and middle-income countries generally having few reliable observations. In this paper we develop a Bayesian penalized splines regression framework to estimate the proportion of stillbirths that are intrapartum for all countries worldwide. The model accounts for known relationships with neonatal mortality, pools information across geographic regions, incorporates different errors based on data attributes, and allows for data-driven temporal trends. A weighting procedure is proposed to account for unrepresentative subnational data. Results suggest that the intrapartum proportion is generally decreasing over time, but progress is slower in some regions, particularly Sub-Saharan Africa.
翻译:减少全球死胎负担对于改善妇幼健康十分重要。令人感兴趣的是了解死胎时间的规律 -- -- 即死胎是在分娩期间还是产前期间发生的 -- -- 因为分娩期间的死胎基本上是可以预防的。然而,关于死胎时间的数据在全世界差异很大,中低收入国家一般很少有可靠的观察数据。在本文件中,我们制定了贝叶斯惩罚性样条回归框架,以估计全世界所有国家在分娩期间的死胎比例。关于已知新生儿死亡率关系的模型,将不同地理区域的信息汇总在一起,纳入基于数据属性的不同错误,并允许数据驱动的时间趋势。建议了一个加权程序,以说明国家以下各级数据缺乏代表性的情况。结果显示,产胎比例一般会随着时间的推移下降,但有些区域的进展却比较缓慢,特别是撒哈拉以南非洲。