In this work, we investigate the interval generalized Sylvester matrix equation ${\bf{A}}X{\bf{B}}+{\bf{C}}X{\bf{D}}={\bf{F}}$ and develop some techniques for obtaining outer estimations for the so-called united solution set of this interval system. First, we propose a modified variant of the Krawczyk operator which causes reducing computational complexity to cubic, compared to Kronecker product form. We then propose an iterative technique for enclosing the solution set. These approaches are based on spectral decompositions of the midpoints of ${\bf{A}}$, ${\bf{B}}$, ${\bf{C}}$ and ${\bf{D}}$ and in both of them we suppose that the midpoints of ${\bf{A}}$ and ${\bf{C}}$ are simultaneously diagonalizable as well as for the midpoints of the matrices ${\bf{B}}$ and ${\bf{D}}$. Some numerical experiments are given to illustrate the performance of the proposed methods.
翻译:暂无翻译