We present a method of generating diverse collections of neural cellular automata (NCA) to design video game levels. While NCAs have so far only been trained via supervised learning, we present a quality diversity (QD) approach to generating a collection of NCA level generators. By framing the problem as a QD problem, our approach can train diverse level generators, whose output levels vary based on aesthetic or functional criteria. To efficiently generate NCAs, we train generators via Covariance Matrix Adaptation MAP-Elites (CMA-ME), a quality diversity algorithm which specializes in continuous search spaces. We apply our new method to generate level generators for several 2D tile-based games: a maze game, Sokoban, and Zelda. Our results show that CMA-ME can generate small NCAs that are diverse yet capable, often satisfying complex solvability criteria for deterministic agents. We compare against a Compositional Pattern-Producing Network (CPPN) baseline trained to produce diverse collections of generators and show that the NCA representation yields a better exploration of level-space.
翻译:我们提出了产生多种神经细胞自动成像(NCA)的方法,以设计电玩水平。虽然NCA迄今仅通过监督学习得到培训,但我们提出了一种质量多样性(QD)方法,以收集NCA级发电机。通过将问题描述为QD问题,我们的方法可以培训不同级别的发电机,其产出水平根据审美或功能标准而有所不同。为了有效产生NCA,我们通过Covariance 矩阵适应适应MAP-Elites(CMA-ME)来培训发电机,这是一种高质量的多样性算法,专门用于连续搜索空间。我们运用了我们的新方法,为若干个基于2D级瓷盘的游戏(Maze游戏、Sokoban和Zelda)生成了级发电机。我们的结果显示,CMA-ME可以产生小型的NCA,它们具有多样性,但能力,往往满足确定剂的复杂溶性标准。我们比较了为生成各种发电机收集而经过培训的组合模式化网络(CPN)基线,并显示NCA代表对水平空间进行更好的探索。