Fault detection and diagnosis is significant for reducing maintenance costs and improving health and safety in chemical processes. Convolution neural network (CNN) is a popular deep learning algorithm with many successful applications in chemical fault detection and diagnosis tasks. However, convolution layers in CNN are very sensitive to the order of features, which can lead to instability in the processing of tabular data. Optimal order of features result in better performance of CNN models but it is expensive to seek such optimal order. In addition, because of the encapsulation mechanism of feature extraction, most CNN models are opaque and have poor interpretability, thus failing to identify root-cause features without human supervision. These difficulties inevitably limit the performance and credibility of CNN methods. In this paper, we propose an order-invariant and interpretable hierarchical dilated convolution neural network (HDLCNN), which is composed by feature clustering, dilated convolution and the shapley additive explanations (SHAP) method. The novelty of HDLCNN lies in its capability of processing tabular data with features of arbitrary order without seeking the optimal order, due to the ability to agglomerate correlated features of feature clustering and the large receptive field of dilated convolution. Then, the proposed method provides interpretability by including the SHAP values to quantify feature contribution. Therefore, the root-cause features can be identified as the features with the highest contribution. Computational experiments are conducted on the Tennessee Eastman chemical process benchmark dataset. Compared with the other methods, the proposed HDLCNN-SHAP method achieves better performance on processing tabular data with features of arbitrary order, detecting faults, and identifying the root-cause features.
翻译:电动神经网络是一个广受欢迎的深层次学习算法,有许多成功的化学过错检测和诊断任务的应用。然而,CNN的演进层对特征的顺序非常敏感,可能导致表层数据的处理不稳定。最优化的特征顺序导致CNN模型的性能更好,但寻求这种最佳的顺序成本很高。此外,由于特征提取的封装机制,大多数CNN模型不透明,不易解释,因此无法在不受人类监督的情况下确定根源特征。这些困难不可避免地限制了CNN方法的性能和可信度。在本文中,我们建议了秩序变化和可解释的等级变异神经网络(HDLCNN),该网络由特征集成、变色变色变变和沙普利添加解释方法组成。HDLNNN的新型在于它处理带有任意性排序特征的表格数据的能力,而没有寻求最佳的顺序。由于有能力使CNNM方法的性能提高性能和性价调的性能。SHLNDS的内化特性,即通过SALD的特性分析方法,通过SLD的特性分析,为SAL-rodufalalalalalalalalalalalalalalal rod rodustrald 提供高的性能的特性的特性的特性,可以提供基础化方法,通过Syaldaldaldaldaldaldald routdaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldald rod 。 。 和Saldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldald ro ro rodaldaldaldaldald rod rod roaldaldaldaldaldaldaldaldaldaldaldald rodaldaldaldald