Backbone architectures of most binary networks are well-known floating point (FP) architectures such as the ResNet family. Questioning that the architectures designed for FP networks might not be the best for binary networks, we propose to search architectures for binary networks (BNAS) by defining a new search space for binary architectures and a novel search objective. Specifically, based on the cell based search method, we define the new search space of binary layer types, design a new cell template, and rediscover the utility of and propose to use the Zeroise layer instead of using it as a placeholder. The novel search objective diversifies early search to learn better performing binary architectures. We show that our method searches architectures with stable training curves despite the quantization error inherent in binary networks. Quantitative analyses demonstrate that our searched architectures outperform the architectures used in state-of-the-art binary networks and outperform or perform on par with state-of-the-art binary networks that employ various techniques other than architectural changes. In addition, we further propose improvements to the training scheme of our searched architectures. With the new training scheme for our searched architectures, we achieve the state-of-the-art performance by binary networks by outperforming all previous methods by non-trivial margins.


翻译:多数二进制网络的后骨结构是众所周知的浮点( FP) 结构, 如 ResNet 家族 。 质疑为 FP 网络设计的结构可能不是二进制网络的最佳工具, 我们提议通过定义二进制结构的新搜索空间和一个新的搜索目标, 为二进制网络搜索结构( BNAS ) 。 具体地说, 我们根据基于单元格的搜索方法, 定义二进制层类型的新搜索空间, 设计一个新的单元格模板, 重新发现并提议使用Zeroise 层的效用, 而不是使用它作为占位符。 新的搜索目标将早期搜索化, 学习更好的运行二进制结构 。 我们显示, 尽管二进制结构中固有的四进制错误, 我们的方法搜索结构是稳定的。 定量分析表明, 我们的搜索结构超越了在最新二进制二进制网络中使用的架构, 超越了与新进制二进制网络的功能, 并且我们进一步建议通过新进制结构的搜索空间, 我们通过前进制的系统, 改进了前进制结构。

0
下载
关闭预览

相关内容

【硬核书】树与网络上的概率,716页pdf
专知会员服务
74+阅读 · 2021年12月8日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
97+阅读 · 2019年12月23日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
146+阅读 · 2019年10月27日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
3+阅读 · 2018年11月19日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
Stock Chart Pattern recognition with Deep Learning
Arxiv
6+阅读 · 2018年8月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
3+阅读 · 2018年11月19日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
Stock Chart Pattern recognition with Deep Learning
Arxiv
6+阅读 · 2018年8月1日
Top
微信扫码咨询专知VIP会员