We develop two isogeometric divergence-conforming collocation schemes for incompressible flow. The first is based on the standard, velocity-pressure formulation of the Navier-Stokes equations, while the second is based on the rotational form and includes the vorticity as an unknown in addition to the velocity and pressure. We describe the process of discretizing each unknown using B-splines that conform to a discrete de Rham complex and collocating each governing equation at the Greville abcissae corresponding to each discrete space. Results on complex domains are obtained by mapping the equations back to a parametric domain using structure-preserving transformations. Numerical results show the promise of the method, including accelerated convergence rates of the three field, vorticity-velocity-pressure scheme when compared to the two field, velocity-pressure scheme.
翻译:我们为压抑性流开发了两种等离子测量差异和同位方案,其中一种基于纳维埃-斯托克斯方程式的标准速度压力配方,第二种基于旋转形式,除速度和压力外,将园艺作为一种未知物列入。我们用符合离散的拉姆复合体的B-SPline将每个未知物分解的过程描述,并在格列维尔阿比塞与每个离散空间相对应的每个方程对齐。通过使用结构-保留变异法将方程式重新映射到准度域,取得了关于复杂域的结果。数字结果显示了该方法的前景,包括三个字段的加速趋同率、与两个字段比较时的体常态-速度-压力方案,即速度-压力方案。