Recent years have seen a surge of interest in the algorithmic estimation of stochastic entropy production (EP) from the trajectory data via machine learning. A crucial element of such algorithms is the identification of a loss function whose minimization guarantees the accurate EP estimation. In this study, we show that there exists a host of loss functions, namely those implementing a variational representation of the $\alpha$-divergence, which can be used for the EP estimation. Among these loss functions, the one corresponding to $\alpha = -0.5$ exhibits the most robust performance against strong nonequilibrium driving or slow dynamics, which adversely affects the existing method based on the Kullback-Leibler divergence ($\alpha = 0$). To corroborate our findings, we present an exactly solvable simplification of the EP estimation problem, whose loss function landscape and stochastic properties demonstrate the optimality of $\alpha = -0.5$.
翻译:近些年来,人们从机器学习的轨迹数据中,对随机昆虫生产(EP)的算法估计表现出了极大的兴趣。这种算法的一个关键要素是确定一种损失函数,这种函数的最小化保证了对EP的准确估计。在本研究中,我们表明,存在着许多损失函数,即对美元-正负系数进行可变表示的功能,可用于EP的估算。在这些损失函数中,与美元=-0.5美元相对应的功能展示了最强的性能,而强力的无平衡驱动或慢动能对基于Kullback-利伯尔差异的现有方法产生不利影响($=0美元)。为了证实我们的调查结果,我们提出了对EP估算问题的完全可溶解的简化,其损失功能景观和随机特性显示了美元=-0.5美元的最佳性。</s>