Estimating time-varying graphical models are of paramount importance in various social, financial, biological, and engineering systems, since the evolution of such networks can be utilized for example to spot trends, detect anomalies, predict vulnerability, and evaluate the impact of interventions. Existing methods require extensive tuning of parameters that control the graph sparsity and temporal smoothness. Furthermore, these methods are computationally burdensome with time complexity O(NP^3) for P variables and N time points. As a remedy, we propose a low-complexity tuning-free Bayesian approach, named BADGE. Specifically, we impose temporally-dependent spike-and-slab priors on the graphs such that they are sparse and varying smoothly across time. A variational inference algorithm is then derived to learn the graph structures from the data automatically. Owning to the pseudo-likelihood and the mean-field approximation, the time complexity of BADGE is only O(NP^2). Additionally, by identifying the frequency-domain resemblance to the time-varying graphical models, we show that BADGE can be extended to learning frequency-varying inverse spectral density matrices, and yields graphical models for multivariate stationary time series. Numerical results on both synthetic and real data show that that BADGE can better recover the underlying true graphs, while being more efficient than the existing methods, especially for high-dimensional cases.


翻译:估计时间的图形模型在各种社会、金融、生物和工程系统中具有至关重要的意义,因为这种网络的演变可以用来发现趋势,发现异常现象,预测脆弱性,评估干预的影响。现有方法需要广泛调整参数,以控制图形的宽度和时间平滑性。此外,这些方法在计算上繁琐,P变量和N时间点的时间复杂性为O(NP3/3)。作为一种补救措施,我们建议采用低兼容性调无Bayesian(称为BADGE)方法。具体地说,我们可以在图表上设置暂时依赖的钉点和板前缀,以便发现它们随时稀少和变化不定,并评估干预干预的影响。然后,从数据中自动学习图形结构结构的变异性算法。对假相似性和中,BADGE的时间复杂性只有O(NP2),此外,通过确定频率与时间分布式的图形模型的相似性,我们表明BADGE可以扩展到学习频率变化频率和频率变化性前期的图表,同时,在多光谱模型中特别能反映真实的BADGE的图像数据压度高,同时显示的是,其真实的模型能够更好地恢复。

0
下载
关闭预览

相关内容

《图形模型》是国际公认的高评价的顶级期刊,专注于图形模型的创建、几何处理、动画和可视化,以及它们在工程、科学、文化和娱乐方面的应用。GMOD为其读者提供了经过彻底审查和精心挑选的论文,这些论文传播令人兴奋的创新,传授严谨的理论基础,提出健壮和有效的解决方案,或描述各种主题中的雄心勃勃的系统或应用程序。 官网地址:http://dblp.uni-trier.de/db/journals/cvgip/
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
自动结构变分推理,Automatic structured variational inference
专知会员服务
40+阅读 · 2020年2月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
17+阅读 · 2019年3月28日
Parsimonious Bayesian deep networks
Arxiv
5+阅读 · 2018年10月17日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
14+阅读 · 2020年12月17日
Arxiv
17+阅读 · 2019年3月28日
Parsimonious Bayesian deep networks
Arxiv
5+阅读 · 2018年10月17日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
3+阅读 · 2018年2月24日
Top
微信扫码咨询专知VIP会员