We introduce the Singular Value Representation (SVR), a new method to represent the internal state of neural networks using SVD factorization of the weights. This construction yields a new weighted graph connecting what we call spectral neurons, that correspond to specific activation patterns of classical neurons. We derive a precise statistical framework to discriminate meaningful connections between spectral neurons for fully connected and convolutional layers. To demonstrate the usefulness of our approach for machine learning research, we highlight two discoveries we made using the SVR. First, we highlight the emergence of a dominant connection in VGG networks that spans multiple deep layers. Second, we witness, without relying on any input data, that batch normalization can induce significant connections between near-kernels of deep layers, leading to a remarkable spontaneous sparsification phenomenon.


翻译:我们引入了单质值代表(Snular value Spresentation) (SVR) (SVD ) (SVR) (SVD ) (SVR) (SVR) (SVR) (SVR) (SVR) (SVR) ) (SVD ) (SVVD ) (SVD ) (SVVD ) (SVVD ) (SVD ) (SVD ) (SVD ) (SVD ) (SVIV) (S) (SVD) ) (S) (SVVD ) (SVD ) (SVD ) (SVD (SVD) (S) (SVD ) (SVD) (SVR) (S) (SVVVR) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S) (Snularent ) (Sing ) (S) (S) (S) (Snal ) (S) (S) (S) (S) (S) (S) (S) (S) (S ) (SVD (S) (S) (SVD (S) (SVD ) (S) (S) (S) (S) (S) (S) (SD ) (S) (S) (S) (S) (SD ) ) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S) (SVD) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S) (SVD ) (SVD) (S) (S) (SVD) (SVD) (S) (S) (S) (S) (S) (S) (S) (SD) (

0
下载
关闭预览

相关内容

专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月6日
Arxiv
14+阅读 · 2019年9月11日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
相关论文
Arxiv
0+阅读 · 2023年4月6日
Arxiv
14+阅读 · 2019年9月11日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
23+阅读 · 2018年10月1日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员