We provide a new and simplified proof of Winter's measurement compression [2004] via likelihood POVMs. Secondly, we provide an alternate proof of the central tool at the heart of this theorem - the Quantum covering lemma - that does not rely on the Ahlswede Winter's operator Chernoff bound [2002], thereby requires only pairwise independence of the involved random operators. We leverage these results to design structured POVMs and prove their optimality in regards to communication rates.
翻译:我们通过POVMs提供了一个新的、简化的冬季测量压缩(2004年)的新证据。 第二,我们提供了另一个证据,证明这一理论核心的核心工具——覆盖莱马的量子体——不依赖Ahlswede Winter的操作员Chernoff的连接[2002年],因此只需要相关随机操作员的双向独立性。我们利用这些结果设计结构化的POVMs,并证明它们在通信率方面是最佳的。