Variable importance measures are the main tools to analyze the black-box mechanisms of random forests. Although the mean decrease accuracy (MDA) is widely accepted as the most efficient variable importance measure for random forests, little is known about its statistical properties. In fact, the exact MDA definition varies across the main random forest software. In this article, our objective is to rigorously analyze the behavior of the main MDA implementations. Consequently, we mathematically formalize the various implemented MDA algorithms, and then establish their limits when the sample size increases. In particular, we break down these limits in three components: the first one is related to Sobol indices, which are well-defined measures of a covariate contribution to the response variance, widely used in the sensitivity analysis field, as opposed to thethird term, whose value increases with dependence within covariates. Thus, we theoretically demonstrate that the MDA does not target the right quantity when covariates are dependent, a fact that has already been noticed experimentally. To address this issue, we define a new importance measure for random forests, the Sobol-MDA, which fixes the flaws of the original MDA. We prove the consistency of the Sobol-MDA and show thatthe Sobol-MDA empirically outperforms its competitors on both simulated and real data. An open source implementation in R and C++ is available online.


翻译:变量重要性措施是分析随机森林黑盒机制的主要工具。 虽然平均降低精确度(MDA)被广泛接受为随机森林最有效的变量重要度量, 但其统计属性却鲜为人知。 事实上, 精确的MDA定义在主要的随机森林软件中各不相同。 在本篇文章中, 我们的目标是严格分析主要的 MDA 执行过程的行为。 因此, 我们从数学上将各种已执行的MDA 算法正式化, 然后在抽样规模增加时确定其限制。 特别是, 我们分解了三个组成部分中的这些限制: 第一个部分与Sobol指数有关, 前者与Sobol指数有关, 后者是用于敏感度分析领域对响应差异作出共变相贡献的精确度度度, 而后者则与第三个术语不同, 后者的价值随共变数的依赖性而增加。 因此, 我们理论上证明, MDA没有在共变量依赖的情况下瞄准正确的数量, 这一事实已经被实验性地注意到了。 为了解决这个问题, 我们定义了随机森林的新的重要度度尺度, Sobol-MDA, 和SOMA 的在线数据源。 我们证明它的真实性地展示了SOMA 和BRA 的试 。

0
下载
关闭预览

相关内容

随机森林 指的是利用多棵树对样本进行训练并预测的一种分类器。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
84+阅读 · 2020年12月5日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【数据集】新的YELP数据集官方下载
机器学习研究会
16+阅读 · 2017年8月31日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月21日
VIP会员
相关VIP内容
专知会员服务
84+阅读 · 2020年12月5日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【数据集】新的YELP数据集官方下载
机器学习研究会
16+阅读 · 2017年8月31日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员