We present a dynamic algorithm for maintaining the connected and 2-edge-connected components in an undirected graph subject to edge deletions. The algorithm is Monte-Carlo randomized and processes any sequence of edge deletions in $O(m + n \operatorname{polylog} n)$ total time. Interspersed with the deletions, it can answer queries to whether any two given vertices currently belong to the same (2-edge-)connected component in constant time. Our result is based on a general Monte-Carlo randomized reduction from decremental $c$-edge-connectivity to a variant of fully-dynamic $c$-edge-connectivity on a sparse graph. While being Monte-Carlo, our reduction supports a certain final self-check that can be used in Las Vegas algorithms for static problems such as Unique Perfect Matching. For non-sparse graphs with $\Omega(n \operatorname{polylog} n)$ edges, our connectivity and $2$-edge-connectivity algorithms handle all deletions in optimal linear total time, using existing algorithms for the respective fully-dynamic problems. This improves upon an $O(m \log (n^2 / m) + n \operatorname{polylog} n)$-time algorithm of Thorup [J.Alg. 1999], which runs in linear time only for graphs with $\Omega(n^2)$ edges. Our constant amortized cost for edge deletions in decremental connectivity in non-sparse graphs should be contrasted with an $\Omega(\log n/\log\log n)$ worst-case time lower bound in the decremental setting [Alstrup, Thore Husfeldt, FOCS'98] as well as an $\Omega(\log n)$ amortized time lower-bound in the fully-dynamic setting [Patrascu and Demaine STOC'04].
翻译:我们提出了一个动态算法, 用于维持连接的和2- 连接的组件。 算法是 Monte- Carlo 随机的, 并处理以$$( m + n\ operatorname{polylog} n) 总时间中的任何边缘删除序列。 在删除中, 它可以回答一个问题, 任何两个给定的顶点目前是否在固定时间中属于同一个( t- ) 连接的部件 。 我们的结果基于一个一般的 Monte- Carlo 随机的削减, 而不是一个完全动态的 $( $- cue- edge- 连接) 的变异 。 虽然是 Monte- Carlo, 我们的递减支持在拉斯维加斯的算法中可以使用某种最终的自我检查, 比如 Unquencial 匹配。 对于以 $( n- porma) 的不扭曲的直径( tal- m) 直径( tal- ma) 直径( tal- tal- ma) 在1999 时间里程中只设置一个最优的直径直径( tal- tal- mal- mal- mal- malalalal- tal- tal- tal) roal- tal- tal- tal) 。