We propose a regularization method for ensemble Kalman filtering (EnKF) with elliptic observation operators. Commonly used EnKF regularization methods suppress state correlations at long distances. For observations described by elliptic partial differential equations, such as the pressure Poisson equation (PPE) in incompressible fluid flows, distance localization cannot be applied, as we cannot disentangle slowly decaying physical interactions from spurious long-range correlations. This is particularly true for the PPE, in which distant vortex elements couple nonlinearly to induce pressure. Instead, these inverse problems have a low effective dimension: low-dimensional projections of the observations strongly inform a low-dimensional subspace of the state space. We derive a low-rank factorization of the Kalman gain based on the spectrum of the Jacobian of the observation operator. The identified eigenvectors generalize the source and target modes of the multipole expansion, independently of the underlying spatial distribution of the problem. Given rapid spectral decay, inference can be performed in the low-dimensional subspace spanned by the dominant eigenvectors. This low-rank EnKF is assessed on dynamical systems with Poisson observation operators, where we seek to estimate the positions and strengths of point singularities over time from potential or pressure observations. We also comment on the broader applicability of this approach to elliptic inverse problems outside the context of filtering.
翻译:我们建议了与椭圆形观测操作员一起的混合卡尔曼过滤(EnKF)的正规化方法。 常用的 EnKF 正规化方法抑制长距离的状态相关性。 对于由椭圆部分偏差方程式描述的观测,例如在不可压缩流体流中的压力 Poisson 方程式(PPEE), 距离本地化是无法应用的, 因为我们无法分解与虚假的长距离相关关系缓慢衰减的物理互动。 对于PPPE来说, 这一点尤为如此, 远方的螺旋元素与非线性的压力成对齐。 相反, 这些反面问题具有低维度的层面: 对观测的低维度预测强烈地为低维度的州空间子空间。 我们根据观测操作员雅各布的频谱将Kalman的增益进行低等级化。 已确定的源源和目标方位将多极扩张的源和目标模式概括化, 而不考虑问题的基本空间分布范围分布。 鉴于光谱的快速衰变异, 这些逆度问题可以在低位次空间范围内的次空间观测中进行, 由主流的动态空间观测操作者对动态空间系统进行这一动态空间定位的超视点进行。