Many quantum algorithms for numerical linear algebra assume black-box access to a block-encoding of the matrix of interest, which is a strong assumption when the matrix is not sparse. Kernel matrices, which arise from discretizing a kernel function $k(x,x')$, have a variety of applications in mathematics and engineering. They are generally dense and full-rank. Classically, the celebrated fast multipole method performs matrix multiplication on kernel matrices of dimension $N$ in time almost linear in $N$ by using the linear algebraic framework of hierarchical matrices. In light of this success, we propose a block-encoding scheme of the hierarchical matrix structure on a quantum computer. When applied to many physical kernel matrices, our method can improve the runtime of solving quantum linear systems of dimension $N$ to $O(\kappa \operatorname{polylog}(\frac{N}{\varepsilon}))$, where $\kappa$ and $\varepsilon$ are the condition number and error bound of the matrix operation. This runtime is near-optimal and, in terms of $N$, exponentially improves over prior quantum linear systems algorithms in the case of dense and full-rank kernel matrices. We discuss possible applications of our methodology in solving integral equations and accelerating computations in N-body problems.
翻译:数字线性变数的许多量子算法假设了对利益矩阵的成块编码的黑箱访问权,这是当矩阵不稀疏时一个强烈的假设。核心矩阵是因离散内核函数$k(x,x”美元)而产生的,在数学和工程方面有各种各样的应用。它们一般都是密集和完整的。典型地说,已知的快速多极法使用等级矩阵线性代数框架,对维度内核矩阵进行矩阵倍增,几乎以美元计算为直线。鉴于这一成功,我们提议在量子计算机上采用等级矩阵结构的成块编码方案。当应用到许多物理内核矩阵时,我们的方法可以改进用于解决尺寸的量直线系统的运行时间,以美元计(kaptappa\ a\operatorname{polylog}(\frac{Nunvarepsilon})美元计算。 利用等级矩阵矩阵的线性代数框架,以美元和美元等值美元构成矩阵操作的状态和错误。在之前的加速型号矩阵中,在快速计算系统中,将快速地改进了U式计算方法。