We show how neural models can be used to realize piece-wise constant functions such as decision trees. The proposed architecture, which we call locally constant networks, builds on ReLU networks that are piece-wise linear and hence their associated gradients with respect to the inputs are locally constant. We formally establish the equivalence between the classes of locally constant networks and decision trees. Moreover, we highlight several advantageous properties of locally constant networks, including how they realize decision trees with parameter sharing across branching / leaves. Indeed, only $M$ neurons suffice to implicitly model an oblique decision tree with $2^M$ leaf nodes. The neural representation also enables us to adopt many tools developed for deep networks (e.g., DropConnect (Wan et al., 2013)) while implicitly training decision trees. We demonstrate that our method outperforms alternative techniques for training oblique decision trees in the context of molecular property classification and regression tasks.


翻译:我们展示了神经模型如何用于实现决策树等小块常态功能。 我们称之为本地常态网络的拟议架构以ReLU网络为基础,这些网络是小块线性网络,因此与投入相关的梯度是本地常态的。 我们正式确定本地常态网络和决定树的等值。 此外, 我们强调本地常态网络的若干优点, 包括它们如何实现决策树, 以及分枝/ 叶的参数共享 。 事实上, 仅$M 的神经元就足以隐含地模拟一个带有 2 ⁇ M$ 叶节点的斜面决策树。 神经代表还使我们能够采用为深层网络开发的许多工具( 例如, DroppConect (Wan等人, 2013)), 同时隐含地培训决策树。 我们证明我们的方法在分子属性分类和回归任务方面, 超越了培训斜面决策树的替代技术。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2019年3月15日
Adaptive Neural Trees
Arxiv
4+阅读 · 2018年12月10日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
3+阅读 · 2018年8月17日
Adversarial Reprogramming of Neural Networks
Arxiv
3+阅读 · 2018年6月28日
Arxiv
8+阅读 · 2018年3月20日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
3+阅读 · 2019年3月15日
Adaptive Neural Trees
Arxiv
4+阅读 · 2018年12月10日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
3+阅读 · 2018年8月17日
Adversarial Reprogramming of Neural Networks
Arxiv
3+阅读 · 2018年6月28日
Arxiv
8+阅读 · 2018年3月20日
Top
微信扫码咨询专知VIP会员