Alzheimer's disease (AD) is the most common form of neurodegeneration, which impacts millions of people each year. Diagnosing and classifying AD accurately with neuroimaging data is an ongoing challenge in the field of medicine. Traditional Convolutional Neural Networks (CNNs) are good at capturing low-level information from images, but their capability to extract high-level minuscule particles is suboptimal, which is a significant challenge in detecting AD from MRI scans. To overcome this, we propose a novel Granular Feature Integration method to combine information extraction at different scales combined with an efficient information flow. We also propose a Bi-Focal Perspective mechanism to highlight focus on subtle neurofibrillary tangles and amyloid plaques in MRI scans. Our model yielded an F1-Score of 99.31%, a precision of 99.24%, and a recall of 99.51%, which shows a major improvement in comparison to existing state-of-the-art (SOTA) CNNs.
翻译:暂无翻译