Reinforcement learning has recently been explored to improve text-to-image generation, yet applying existing GRPO algorithms to autoregressive (AR) image models remains challenging. The instability of the training process easily disrupts the pretrained model capability during long runs, resulting in marginal gains, degraded image quality, and poor generalization. In this work, we revisit GRPO for AR image generation and identify two key issues: contradictory gradients from unnecessary tokens and unstable policy entropy dynamics. To address these, we introduce STAGE, a stable and generalizable framework that leverages two targeted solutions: 1) Advantage/KL reweighting. Similarity-aware reweighting to alleviate conflicting updates; and 2) Entropy reward. An entropy-based reward corresponding to reference model to stabilize learning. With the help of alleviating conflicts between tokens and an entropy reward for stabilizing training, we reduce disruption of the pretrained distribution and mitigate reward hacking, which in turn improves generalization and transfer better to other benchmarks. Experiments across multiple benchmarks show that STAGE consistently improves visual quality, stability, and cross-task generalization compared to baseline GRPO.
翻译:暂无翻译