Accurate classification of medical images is critical for detecting abnormalities in the gastrointestinal tract, a domain where misclassification can significantly impact patient outcomes. We propose an ensemble-based approach to improve diagnostic accuracy in analyzing complex image datasets. Using a Convolutional Block Attention Module along with a Deep Neural Network, we leverage the unique feature extraction capabilities of each model to enhance the overall accuracy. The classification models, such as Random Forest, XGBoost, Support Vector Machine and K-Nearest Neighbors are introduced to further diversify the predictive power of proposed ensemble. By using these methods, the proposed framework, CAVE-Net, provides robust feature discrimination and improved classification results. Experimental evaluations demonstrate that the CAVE-Net achieves high accuracy and robustness across challenging and imbalanced classes, showing significant promise for broader applications in computer vision tasks.
翻译:暂无翻译