Semantic dependency parsing aims to identify semantic relationships between words in a sentence that form a graph. In this paper, we propose a second-order semantic dependency parser, which takes into consideration not only individual dependency edges but also interactions between pairs of edges. We show that second-order parsing can be approximated using mean field (MF) variational inference or loopy belief propagation (LBP). We can unfold both algorithms as recurrent layers of a neural network and therefore can train the parser in an end-to-end manner. Our experiments show that our approach achieves state-of-the-art performance.
翻译:语义依赖分析旨在确定形成图表的句子中的词语之间的语义关系。 在本文中,我们建议采用二级语义依赖分析器,不仅考虑到个体依赖边缘,而且考虑到对边缘之间的相互作用。我们显示,第二级分析可以使用中位字段(MF)变异推理或循环信仰传播(LBP)进行近似。我们可以将这两种算法作为神经网络的重复层展开,从而能够以端到端的方式培训解析器。我们的实验表明,我们的方法达到了最先进的性能。