This paper contributes multivariate versions of seven commonly used elastic similarity and distance measures for time series data analytics. Elastic similarity and distance measures are a class of similarity measures that can compensate for misalignments in the time axis of time series data. We adapt two existing strategies used in a multivariate version of the well-known Dynamic Time Warping (DTW), namely, Independent and Dependent DTW, to these seven measures. While these measures can be applied to various time series analysis tasks, we demonstrate their utility on multivariate time series classification using the nearest neighbor classifier. On 23 well-known datasets, we demonstrate that each of the measures but one achieves the highest accuracy relative to others on at least one dataset, supporting the value of developing a suite of multivariate similarity and distance measures. We also demonstrate that there are datasets for which either the dependent versions of all measures are more accurate than their independent counterparts or vice versa. In addition, we also construct a nearest neighbor-based ensemble of the measures and show that it is competitive to other state-of-the-art single-strategy multivariate time series classifiers.
翻译:本文为时间序列数据分析提供了七种常用弹性相似性和距离测量的多变量版本。 高度相似性和距离测量是一系列相似性测量,可以补偿时间序列数据的时间轴中的不匹配性。 我们调整了在已知的动态时间转换(DTW)多变量版本中所使用的两种现有策略,即独立和依赖DTW, 以适应这七项测量。 虽然这些措施可以适用于不同的时间序列分析任务,但我们也展示了它们对于使用最近的近邻分类器进行多变量时间序列分类的效用。 在23个众所周知的数据集中,我们显示,其中每一项措施,但其中一项措施在至少一个数据集上与其他数据集相比达到最高精确度,支持开发一套多变量相似性和距离测量的组合值。 我们还表明,所有措施的依赖版本都比其独立的对应方或反之更精确。 此外,我们还建立了一个最近的基于邻居的时间序列套措施,并显示它与其他州- 级的单一战略级数级数的多指标序列具有竞争力。