Simulation engines like Gazebo, Unity and Webots are widely adopted in robotics. However, they lack either full simulation control, ROS integration, realistic physics, or photorealism. Recently, synthetic data generation and realistic rendering advanced tasks like target tracking and human pose estimation. However, when focusing on vision applications, there is usually a lack of information like sensor measurements (e.g. IMU, LiDAR, joint state), or time continuity. On the other hand, simulations for most robotics applications are obtained in (semi)static environments, with specific sensor settings and low visual fidelity. In this work, we present a solution to these issues with a fully customizable framework for generating realistic animated dynamic environments (GRADE) for robotics research. The data produced can be post-processed, e.g. to add noise, and easily expanded with new information using the tools that we provide. To demonstrate GRADE, we use it to generate an indoor dynamic environment dataset and then compare different SLAM algorithms on the produced sequences. By doing that, we show how current research over-relies on well-known benchmarks and fails to generalize. Furthermore, our tests with YOLO and Mask R-CNN provide evidence that our data can improve training performance and generalize to real sequences. Finally, we show GRADE's flexibility by using it for indoor active SLAM, with diverse environment sources, and in a multi-robot scenario. In doing that, we employ different control, asset placement, and simulation techniques. The code, results, implementation details, and generated data are provided as open-source. The main project page is https://eliabntt.github.io/grade-rr while the accompanying video can be found at https://youtu.be/cmywCSD-9TU.


翻译:Gazebo、Unity和Webot等模拟引擎被机器人广泛采用,但它们要么缺乏完全模拟控制、ROS集成、现实物理学或光现实主义。最近,合成数据生成和现实化任务,如目标跟踪和人造估计等,最近,合成数据生成和现实化任务成为目标跟踪和人造估计等高级任务。然而,当侧重于视觉应用时,通常缺乏传感器测量(如IMU、LiDAR、联合状态)或时间连续性等信息。另一方面,大多数机器人应用程序的模拟是在(半)智能环境中获得的,有特定的传感器设置和视觉忠诚度低。在这项工作中,我们用完全可定制的框架对这些问题提出解决办法,为机器人研究创造现实化的模拟动态动态动态环境环境(GRADE),例如添加噪音,利用我们提供的新信息来扩展。GRADE,我们用内部动态环境数据集,我们用真实的 RRCR-NBE 进行实时数据定位,我们用常规数据测试来生成。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员