Data valuation is critical in machine learning, as it helps enhance model transparency and protect data properties. Existing data valuation methods have primarily focused on discriminative models, neglecting deep generative models that have recently gained considerable attention. Similar to discriminative models, there is an urgent need to assess data contributions in deep generative models as well. However, previous data valuation approaches mainly relied on discriminative model performance metrics and required model retraining. Consequently, they cannot be applied directly and efficiently to recent deep generative models, such as generative adversarial networks and diffusion models, in practice. To bridge this gap, we formulate the data valuation problem in generative models from a similarity-matching perspective. Specifically, we introduce Generative Model Valuator (GMValuator), the first model-agnostic approach for any generative models, designed to provide data valuation for generation tasks. We have conducted extensive experiments to demonstrate the effectiveness of the proposed method. To the best of their knowledge, GMValuator is the first work that offers a training-free, post-hoc data valuation strategy for deep generative models.
翻译:暂无翻译