Shortcut learning is common but harmful to deep learning models, leading to degenerated feature representations and consequently jeopardizing the model's generalizability and interpretability. However, shortcut learning in the widely used Vision Transformer framework is largely unknown. Meanwhile, introducing domain-specific knowledge is a major approach to rectifying the shortcuts, which are predominated by background related factors. For example, in the medical imaging field, eye-gaze data from radiologists is an effective human visual prior knowledge that has the great potential to guide the deep learning models to focus on meaningful foreground regions of interest. However, obtaining eye-gaze data is time-consuming, labor-intensive and sometimes even not practical. In this work, we propose a novel and effective saliency-guided vision transformer (SGT) model to rectify shortcut learning in ViT with the absence of eye-gaze data. Specifically, a computational visual saliency model is adopted to predict saliency maps for input image samples. Then, the saliency maps are used to distil the most informative image patches. In the proposed SGT, the self-attention among image patches focus only on the distilled informative ones. Considering this distill operation may lead to global information lost, we further introduce, in the last encoder layer, a residual connection that captures the self-attention across all the image patches. The experiment results on four independent public datasets show that our SGT framework can effectively learn and leverage human prior knowledge without eye gaze data and achieves much better performance than baselines. Meanwhile, it successfully rectifies the harmful shortcut learning and significantly improves the interpretability of the ViT model, demonstrating the promise of transferring human prior knowledge derived visual saliency in rectifying shortcut learning


翻译:捷径学习是常见的,但有害于深层学习模式,导致地貌表现退化,从而危及模型的通用性和可解释性。然而,在广泛使用的视野变异器框架内的捷径学习基本上不为人所知。同时,引入具体领域的知识是纠正捷径的主要方法,而捷径主要是背景相关因素。例如,在医学成像领域,放射师的眼视透镜数据是一种有效的人类视觉先前知识,它极有可能引导深层学习模式,以关注有意义的浅浅浅浅区域。然而,获取眼凝数据耗费时间,劳动密集型,有时甚至不切实际。在此工作中,我们建议采用新颖而有效的显性指导视觉变异器(SGT)模型,以纠正在维特的捷径学习中,缺乏视觉变异性数据。具体地,采用计算视觉显性模型来预测输入图像样本的显性地图。随后,显性地图被用来挖取信息性最强的直径图像传输区。在SGT(SGT)中,在图像变异的自我观察中展示,在图像变异的自我变现过程中,仅仅显示着的视觉变异性变异性变异性数据,只是我们之前的预了解了数据。我们之前的路径。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
13+阅读 · 2018年4月6日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员