We present a case study of using machine learning classification algorithms to initialize a large-scale commercial solver (GENCOL) based on column generation in the context of the airline crew pairing problem, where small savings of as little as 1% translate to increasing annual revenue by dozens of millions of dollars in a large airline. Under the imitation learning framework, we focus on the problem of predicting the next connecting flight of a crew, framed as a multiclass classification problem trained from historical data, and design an adapted neural network approach that achieves high accuracy (99.7% overall or 82.5% on harder instances). We demonstrate the usefulness of our approach by using simple heuristics to combine the flight-connection predictions to form initial crew-pairing clusters that can be fed in the GENCOL solver, yielding a 10x speed improvement and up to 0.2% cost saving.
翻译:我们提出了一个案例研究,即利用机器学习分类算法在航空机组人员配对问题的背景下,根据柱子生成启动大型商业求解器(GENCOL ) 。 在这种情况下,略微节约的1%转化为在大型航空公司中增加数十亿美元的年度收入。 在模仿学习框架下,我们侧重于预测机组人员下一个连接飞行的问题,该机组人员是一个从历史数据中培训的多级分类问题,并设计一个适应性神经网络方法,实现高精确度(总体99.7%或82.5%在更困难的案例中 ) 。 我们通过使用简单的超自然学方法展示了我们的方法的实用性,将飞行连接预测结合起来,形成可以由GENCOOL 求解器供养的最初机组人员搭载集群,从而实现10x速度改进和高达0.2%的成本节约。