The cost of software maintenance often surpasses the initial development expenses, making it a significant concern for the software industry. A key strategy for alleviating future maintenance burdens is the early prediction and identification of change-prone code components, which allows for timely optimizations. While prior research has largely concentrated on predicting change-prone files and classes, an approach less favored by practitioners, this paper shifts focus to predicting highly change-prone methods, aligning with the preferences of both practitioners and researchers. We analyzed 774,051 source code methods from 49 prominent open-source Java projects. Our findings reveal that approximately 80% of changes are concentrated in just 20% of the methods, demonstrating the Pareto 80/20 principle. Moreover, this subset of methods is responsible for the majority of the identified bugs in these projects. After establishing their critical role in mitigating software maintenance costs, our study shows that machine learning models can effectively identify these highly change-prone methods from their inception. Additionally, we conducted a thorough manual analysis to uncover common patterns (or concepts) among the more difficult-to-predict methods. These insights can help future research develop new features and enhance prediction accuracy.
翻译:暂无翻译